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under a broader set of environmental factors. The results of our first experiment showed that the better of the
simulated annealing heuristic variants yielded the optimal solution in seven of eight test problems, averaging
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Abstract 

Little research has been done on the optimal mix of supply in service businesses that maximizes 

revenue. Our research context is the full-service restaurant table mix problem. This problem, 

which is quite new to the literature, finds the optimal number of different size tables for a 

restaurant to maximize its value (revenue or contribution) generating potential. Specifically, we 

examine the effectiveness of eight heuristic techniques for the problem using two experiments. 

The first experiment uses data from a 240-seat full-service restaurant to evaluate all eight 

heuristics, while the second experiment investigates the performance of selected heuristics under 

a broader set of environmental factors. The results of our first experiment showed that the better 

of the simulated annealing heuristic variants yielded the optimal solution in seven of eight test 

problems, averaging within 0.1% of optimal. Our second experiment showed that the simplest of 

the models we investigated yielded solutions within 1% of the simulated annealing solution. 

Finally, we observed that altering the table mix on a daily basis increased performance by over 

1% compared to maintaining the optimal weekly table mix. 
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1. Introduction 

Revenue management (RM) has been defined as selling the right inventory unit to the 

right customer at the right time and at the right price (Smith et al., 1992). It typically focuses on 

demand management through manipulating price and inventory controls, but rarely considers the 

impact of managing supply or developing the best mix of inventory units. The best RM practices 

may still lead to sub-optimal results if supply is not well configured. 

As examples, consider hotels and airlines. Hotels use rate and length of stay controls, but 

do not generally consider whether they have the best mix of room types. Airlines use fare and 

origin–destination controls and implement fleet assignment algorithms (Rexing et al., 2000), but 

do not usually consider whether they have the best mix of plane sizes or whether the planes are 

optimally configured. Restaurants have only recently begun to implement RM and have 

concentrated on managing customer dining time (Kimes et al., 2002), using demand-based 

pricing (Kimes and Wirtz, 2002) and increasing kitchen productivity (Sill, 1991), but with the 

exception of Kimes (2004) and Kimes and Thompson (2004), have not really considered how 

their table mix affects revenue. 

Little research has been done on the profit- or revenue-maximizing mix of supply in any 

industry. While the revenue management research has concentrated on the most profitable way in 

which to allocate demand to available supply, and the capacity management literature has 

focused on matching supply and demand in the most efficient way, we have found very little 

research that addresses the mix of supply that will help maximize revenue for a given demand. 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib32
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib28
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib20
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib18
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib31
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib15
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
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In this paper, we concentrated on the optimal table mix in the restaurant industry. If a 

restaurant can use its demand data to develop a table mix that can help it serve more customers 

during busy periods, it can increase revenue. The revenue potential for an improved table mix for 

the restaurant industry is quite large. In the US, $ 147 billion was spent in full-service restaurants 

(those having a wait staff) and US$ 115 billion in limited service (fast-food) restaurants 

(National Restaurant Association, 2002). 

2. Literature review 

Two streams of literature seem relevant to the supply mix problem: revenue management 

and capacity management. Revenue management is a specialized form of capacity management 

that seeks to manage demand to maximize revenue or contribution, while capacity management 

attempts to better manage supply and demand for improved efficiency. 

2.1. Revenue management 

Revenue management (RM) was originally developed in the airline industry (Smith et al., 

1992) and has gained widespread acceptance in the hotel industry (Baker et al., 2002 and Hanks 

et al., 1992), the cruise industry (Lieberman and Dieck, 2002) and rental car industry (Carroll 

and Grimes, 1995 and Geraghty and Johnson, 1997). Companies using RM have reported 

revenue increases of 2–5% (Hanks et al., 1992 and Smith et al., 1992). RM efforts generally 

revolve around inventory allocation and overbooking approaches (Baker et al., 2002, Belobaba, 

1989, McGill and van Ryzin, 1999 and Weatherford and Bodily, 1992) and pricing initiatives 

(Bitran and Mondschein, 1997 and Gallego and van Ryzin, 1994). 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib27
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib32
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib32
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib2
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib14
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib14
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib23
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib8
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib8
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib11
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib14
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib32
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib2
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib4
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib4
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib25
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib37
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib6
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib10
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The expected marginal seat revenue (EMSR) and bid price models are the most widely 

used approaches and have been the focus of much research (McGill and Van Ryzin, 1999). 

Regardless of the allocation method used, detailed forecasts of customer arrival, cancellation and 

no-show behavior are required (i.e. day of week, time of day and flight for the airline industry or 

day of week, length of stay and room type in the hotel industry). 

The literature on restaurant revenue management is fairly recent (Kimes et al., 

1998 and Kimes et al., 1999) and almost all articles have focused on arrival (Bertsimas and 

Shioda, 2003, Kimes, 2004 and Kimes and Thompson, 2004) and duration (Kimes et al., 

1999 and Kimes et al., 2002) control. Limited research has been conducted on the optimal supply 

mix (Kimes and Thompson, 2004, Thompson, 2002 and Thompson, 2003). Pricing, although an 

important aspect of any revenue management strategy, has received limited attention (Kimes and 

Wirtz, 2002 and Kimes and Wirtz, 2003). Since the focus of our research is on the optimal table 

mix, an important element of any arrival control strategy, the articles on arrival control and 

supply mix are the most relevant. 

Bertsimas and Shioda (2003) studied optimal table assignment rules for a small, fictional 

restaurant. Table assignment rules considered included first-come-first-served, full nesting, one-

up nesting and no-nesting. With the first-come-first-served assignment rule, parties were seated 

on a first-come-first-served basis at the next available table that was capable of fitting the party 

(i.e. a party of four could not be seated at a table for two). The full nesting rule allowed parties of 

size k to be seated at a size k′ table for k′ ≥ k. If there were several possible table sizes available, 

the party was seated at the smallest table size. The one-up nesting rule seated parties of size k at 

either a table of size k or at the next largest table size if size k tables were unavailable. The no-

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib25
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib17
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib17
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib16
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib5
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib5
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib15
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib16
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib16
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib20
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib35
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib36
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib18
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib18
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib19
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib5
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nesting rule only seated parties at the right table size (i.e. parties of 4 could only be seated at 

tables for 4). 

They developed and tested three different models (integer programming, stochastic 

integer programming and approximate dynamic programming) for each of the nesting rules and 

found that the approximate dynamic programming model achieved higher revenues without an 

increase in waiting time. While their research is interesting, they assumed that the table mix was 

static. 

Thompson (2002) addressed the issue of combinable tables. Specifically, he studied 

whether it is more profitable to have tables dedicated to serving parties of a particular size (i.e. 

parties of 1 or 2 can be served at 2-tops, parties of 1–4 can be served at 4-tops) or whether the 

restaurant should use tables that can be combined as needed based on party size. He used 

simulation to study the impact of using five levels of combinability (0%, 10%, 30%, 50% and 

100%) in two different restaurant sizes (50 and 200 seats) for three different mean party sizes 

(2.5, 3.5 and 4.5 people). 

He found that combinable tables worked better only for smaller restaurants with small 

mean party sizes and that dedicated tables worked best for all other restaurants. This outcome 

can be explained by the loss of productivity that occurs when some tables are held out of service 

until adjacent tables become available (so that the tables can be combined to seat a large party). 

In later research (2003), he studied the optimal configuration of combinable tables and found that 

better configurations used longer sequences of smaller combinable tables and that effective 

configurations could result in a 1.4% improvement in revenue. 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib35
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Kimes and Thompson (2004) used data from a 230-seat Chevys Freshmex Restaurant in 

conjunction with a simulation model to test all possible combinations of table sizes. They found 

that an optimal table mix allowed the restaurant to serve up to 35% more customers without 

increasing waiting time as compared to the restaurant's existing table mix. By implementing an 

improved table mix, the restaurant was able to increase revenue by 5.1% with a payback period 

of less than one year. A full discussion of the data and the implementation process is included in 

Kimes (2004). 

2.2. Capacity management 

Research in capacity management has primarily addressed methods of managing demand 

to better match supply and ways of manipulating supply to better manage demand, but has rarely 

considered the impact of redesigning supply (Klassen and Rohleder, 2001, Lovelock, 1992, Ng 

et al., 1999 and Sasser, 1976). In an extensive search of the literature we found few mentions of 

the optimal supply mix or the impact that supply mix has on revenue: the optimal amount of 

supply was discussed in a quickservice restaurant environment (Banker and Morey, 1993), the 

rental car industry considers both the optimal amount and configuration of supply (Carroll and 

Grimes, 1995 and Geraghty and Johnson, 1997), and the labor scheduling literature has some 

models addressing the issue (Goodale et al., 2003 and Thompson, 1995). 

The design of supply has four components: (1) the number of facilities; (2) the size of 

those facilities; (3) the supply mix; and (4) the flexibility of that supply mix (Kimes and 

Thompson, 2004). Based on the research of Bertsimas and Shioda (2003), we believe there is 

fifth element: the supply assignment rule. Restaurants must decide which parties to seat at which 

tables, self-storage companies must decide which customers to place in certain spaces and rental 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib15
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib22
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib24
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib26
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib26
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib30
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib3
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib8
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib8
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib11
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib12
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib34
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib5
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car companies must decide which clients should receive certain-sized cars. While Bertsimas and 

Shioda (2003) propose four different table assignment rules (first-come-first-served, fully nested, 

one-up nesting and no nesting), there are several other rules including, for example, assigning a 

table to the largest waiting party that fits. As discussed in Bertsimas and Shioda (2003), the table 

assignment rule used can have a significant revenue impact. 

The optimal supply mix can have considerable revenue impact. For example, in the 

airline industry, the optimal mix of plane sizes can help an airline operate more efficiently and 

increase profitability, or in the hotel industry, the optimal mix of room types can greatly affect 

the financial results achieved. While the revenue management research has concentrated on the 

most profitable way in which to allocate demand to available supply, we have found very little 

research (with perhaps the exception of the flight assignment program (Rexing et al., 2000)) that 

addresses the optimal mix of supply. Other industries face similar supply mix problems. For 

example, self-storage facilities must decide on the optimal mix of different size storage spaces, 

and performing arts centers and stadiums must decide on the dynamic optimal partition of seats 

to different market segments. 

In the restaurant context, the optimal mix of supply is the number of each size table that 

should be used. Specifically, what is the best mix of 2-tops (tables for 2), 4-tops (tables for 4), 6-

tops (tables for 6) and 8-tops (tables for 8)? The ideal table mix is affected by a number of 

factors including space constraints, party characteristics, restaurant layout, and table 

combinability. Interestingly, from a space perspective, tables commonly require space 

proportional to their number of seats, the number of tables used for a given seat capacity is 

immaterial since a 2-top typically takes fifteen square-feet (including space for the table, chairs 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib5
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib5
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib5
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib28
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and circulation), a 4-top takes about 30-square-feet and a 6-top takes about 45-square-feet 

(Robson, 2004). Seat capacity is typically governed by facility size and corporate strategy, while 

party size is most probably a result of local area demographics, restaurant type and marketing. 

Party size distribution is stochastic and can vary by day of week and time of day. Dining duration 

and expenditure patterns are largely dictated by the type of restaurant (i.e. fine dining, fast-food), 

by internal service delivery systems and by type of customer (i.e. business or pleasure) and can 

exhibit a high variance across customers. Combinable tables are separate, adjacent tables that can 

be combined to seat larger parties. 

Restaurants face the table mix problem both before and after construction. In the former 

case, they must use the predicted customer mix to address the table mix problem; while in the 

latter case, they can periodically re-evaluate their table mix based on the actual customer mix. 

Re-evaluating a restaurant's table mix is possible because the cost of changing the table mix is 

not prohibitively high if all 2-tops are used, since those tables can be reconfigured into the 

desired layout during slow times and since, in general, no additional labor cost is required and if 

the restaurant is configured with all 2-tops, it can reconfigure those tables into desired layout). In 

our earlier research, we used complete enumeration to develop an optimal table mix for an 

existing Chevys restaurant in the Southwestern US (Kimes and Thompson, 2004). Management 

implemented a table mix that differed slightly from our recommended mix and that mix led to a 

5.1% increase in overall revenue. Although complete enumeration yielded optimal results, it was 

computationally time consuming. This spurred our interest in finding fast, effective heuristic 

methods for solving the table mix problem. 

3. Solution approaches 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib29
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
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After considering the merits of various approaches to table mix optimization, we settled 

on simulation as a tool to evaluate table mixes, since it is ideally suited to incorporate the 

stochastic nature of a restaurant. We developed a simulation model, which we call TABLEMIX 

(Thompson, 2002 and Thompson, 2003) that simulates the use of restaurant tables over a 

specified dining period. 

In addition to complete enumeration of the table mix alternatives, we formulated three 

integer-programming based models: a naïve model, a time-based model, and a revenue-

management-based model. We also developed two variants of a simulated annealing heuristic for 

their applicability to this problem. We describe each of the approaches below. We will first 

define our data. 

3.1. Data definitions 

Below we define indices, sets, constants and variables which we use in describing our 

table mix heuristics. 

Indices are: 

d: index for days 

i, j: index for table sizes 

p: index for party sizes 

t, t′: index for time periods 

Sets are: 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib35
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib36
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CoversTimept: time periods in which a party of size p can commence dining and 

still require a table in time period t, customer arrival patterns varied, and depending on 

the dining duration (Durp) and time period (t) used durations, customers might be present 

for multiple time periods. For example if dining duration was 1.2 h, and the time periods 

were 1 h, the customers would be present for one full time period plus 20% of the next. 

For computational simplicity, all customers were assumed to arrive at the beginning of a 

time period. 

Days: days (or meal periods) under consideration 

Parties: party sizes 

PartyFitsi: party sizes that will fit in table size i. For example, a party of size 3 or 

4 would fit at tables of 4, 6 or 8, but would not fit at a table for 2. 

TableFitsp: table sizes that will hold a party of size p. For example, a party of four 

could be seated at 4-top and larger tables, but not a 3-top or smaller table. 

Tables: allowed table sizes (measured as a seat count) 

Times: daily time periods 

Constants are: 

bp: probability of an arriving party being of size p 

Durp: mean dining duration (in minutes) for parties of size p 
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ExpPartiespd: expected number of arriving parties of size p during the peak 

demand period on day d 

ExpPartiespdt: expected number of arriving parties of size p during the time period 

t on day d 

Seats: total seats in the restaurant 

NDBSeatProportionsi is an estimate, that does not consider dining duration, of the 

demands placed on tables having i seats.  

 

NDBIdealSeatsi: is an estimate, that does not consider dining duration, of the ideal total 

number of seats in tables having i seats. 

 

DBSeatProportionsi: is an estimate, that consider dining durations, of the demands placed 

on tables having i seats. 
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DBIdealSeatsi: is an estimate, that considers dining duration, of the ideal total 

number of seats in tables having i seats. 

PeakMinsd: length of the peak demand period on day d, in minutes 

Valuep: mean value (i.e., revenue or contribution) for parties of size p 

Valuepd: mean value (i.e., revenue or contribution) for parties of size p on day d 

Variables are: 

xi: number of tables with i seats 

si−: seat shortage of tables with i seats 

si+: seat surplus of tables with i seats 

wpidwpid: number of parties of size p seated at tables with i seats on day d 

wpidtwpidt: number of parties of size p seated at tables with i seats in time period t 

of day d 

3.2. Complete enumeration (Enum) 

We used the TABLEMIX enumeration functionality to evaluate all unique table mixes of 

a restaurant. The large number of table mixes becomes quite large because all combinations of 2-

tops, 4-tops, 6-tops and 8-tops must be considered. For example, a restaurant of 120 seats would 

have 1815 table mix combinations using all 120 seats. Larger restaurants have even more 

combinations: doubling the size of the restaurant to 240 seats increases the number of table-mix 
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combinations by almost 650%, to 13,561. Enumerating all possible table mixes enabled us to 

identify the optimal solution for each problem and also to easily assess the solution quality of the 

different heuristics we tested. 

3.3. Naïve integer programming models (NaïveIPs) 

We used two versions of a Naïve integer programming model. NaïveIP-A is based on 

calculations presented in Thompson (2002) and Kimes and Thompson (2004) and only includes 

information on party size mix, total number of seats, and allowable table sizes. NaïveIP-B is 

similar to NaïveIP-A, but accounts for dining durations that vary by party size. We have also 

converted the calculations to an IP model since Thompson (2002) did not offer suggestions on 

how to round fractional solutions to integral numbers of tables. NaïveIP-A is: 

 

Subject to: 

 

The objective for NaïveIP-B is the same as for NaïveIP-A, but the first constraint set is 

different: 

Min (5) 

Subject to: 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib35
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib35
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The decision variables in NaïveIP-A and NaïveIP-B are the number of each size table to 

use (the xi) and the deviation variables (the s−i and s+i), which are used to measure differences 

between the actual and ideal number of seats allocated to each size table. The objective of both 

models (5) minimizes deviations between the actual and ideal total number of seats allocated to 

each size table. Basically, the objective has the goal of balancing capacity and demand, without 

regard to the value of different size parties. 

NaïveIP-A has three constraint sets. Constraint set (6) includes information on party 

probabilities and measures the difference between the actual number of seats allocated to each 

table size and the non-duration-based ideal number of seats for that table size (2). Constraint set 

(7) ensures that the sum of the number of seats allocated to each table size does not exceed the 

number of seats in the restaurant. Constraint set (8) ensures the integrality and non-negativity of 

the table variables. 

Similarly, NaïveIP-B has three constraint sets, two of which (7) and (8) are common to 

NaïveIP-A. Constraint set (9) differs from constraint set (6), only in that (9) uses duration-based 

estimates of the ideal number of seats for each table size. 

Key inputs to NaïveIP-A and NaïveIP-B are the non-duration-based and duration-based 

ideal number of seats to be allocated to each table size (the NDBIdealSeatsi and DBIdealSeatsi, 

respectively), which are based on the goal of matching the table mix to customer demand. These 

calculations (2) and (4), are based on the proportion of total seats in the restaurant that each 

particular table size should receive. To use NaïveIP-A and NaïveIP-B for the development of the 
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weekly solution, one simply averages across the days the probability by party size (the bp) and, 

for NaïveIP-B, the durations by party size (the Durp). 

NaïveIP-A and NaïveIP-B use the most aggregated data of the three IP models. This is an 

advantage, in that it results in the models requiring few decision variables and consequently 

being easy to solve. However, the high level of aggregation may be a disadvantage, in that 

detailed information about which parties are seated at which tables is missing and the revenue 

associated with each party is not used, and so the models may yield inferior solutions. In 

addition, performing a sensitivity analysis on NaïveIP-A and NaïveIP-B provides less useful 

information than do the two other IP models. In earlier research (Kimes and Thompson, 2004), 

we found that the NaïveIP-A model produced the optimal solution, but believed that the model 

was not robust in most circumstances. 

3.4. Time-based integer programming model (TimeIP) 

Compared to the NaïveIP models, TimeIP has a lower level of data aggregation. TimeIP 

is: 

 

Subject to: 

 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib21
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TimeIPs decision variables are the number of each size table (the xi) and the number of 

parties of each size that are served at each size table each day (the wpid). TimeIPs objective (10) 

is to maximize the value of parties served. Constraint set (11) limits the amount of time that each 

table size can be used, per day. Constraint set (12) limits the number of parties served of each 

size on each day to the number of parties of that size expected to arrive on the particular day. 

Constraint set (13) imposes the non-negativity and integrality restrictions on the party-to-table 

allocation variables. Constraint set (7) applies the seat capacity for restaurant, while constraint 

set (8) ensures the non-negativity and integrality of the table quantity variables. By controlling 

the set days, the days to be considered, TimeIP can be easily modified for determining the table 

mix for a single day or for a week. 

TimeIP aggregates data less than the NaïveIP models, which should result in it yielding 

superior solutions compared to the NaïveIP models. The structure of TimeIP is such that its LP 

relaxation can yield sensitivity analysis information about the value to the restaurant of 

additional seats or time. TimeIP requires more integer variables than does the NaïveIP models, 

so we expected it to be slower to solve. Also, by aggregating customer arrival data into a single 

daily planning interval, TimeIP fails to represent the stochastic nature of party arrivals, party 

size, and service durations. In addition, its lack of revenue data may lead to suboptimal results. 

3.5. Revenue management integer programming model (RevMgtIP) 

For our next IP-based model, we adapted the linear programming model commonly used 

for hotel revenue management (Baker et al., 2002 and Choi and Kimes, 2002). In the hotel 

industry, the decision variables are the number of customer arrivals to accept per day at a 

particular rate category (RC) and a particular length of stay (LOS). The linear programming 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib2
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib9
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model has two types of constraints: capacity (one constraint for each day) and demand (one 

constraint for each RC and LOS combination). RevMgtIP follows a similar format, but the LOS 

is the dining duration, the capacity is the number of seats available, and the rate is the average 

check (or some other measure of party value). RevMgtIP is: 

 

Subject to: 

 

RevMgtIPs decision variables are the number of each size table (the xi) and the number of 

parties of each size that are served at each size table during each daily time period (the wpidt). Its 

objective (14) is to maximize value (whether it be revenue or contribution). Constraint set (15) 

ensures that, for each day and time period, the total number of occupied tables of each size does 

not exceed the model's choice of the number of that size table. The constraint recognizes that 

parties staying over from previous periods can continue to use tables. Constraint (15) is slightly 

different in form compared to the capacity constraints in previous RM models. The difference is 

that in earlier RM models, capacity is a given, so the right side of constraint (15) is a constant 

(for example, equal to the available number of a certain type room in a hotel). In the right side of 

constraint (15), however, capacity is a variable, which the model itself determines. 
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Constraint set (16) ensures that the number of customers of each party size for whom 

service commences in each daily time period does not exceed the number of parties of that size 

expected during that period. Constraint set (17) ensures an integer, non-negative solution of the 

party allocation variables. Constraint set (7) applies the seat capacity for restaurant, while 

constraint set (8) ensures the non-negativity and integrality of the table quantity variables. 

RevMgtIP can either be run for all days of week or for any combination of days desired by 

controlling the set Days. 

The LP relaxation of RevMgtIP can lead to interesting sensitivity analysis results. As 

with the hotel bid-price method (Baker and Collier, 1999), the shadow prices of the overall 

capacity constraint (constraint (7)) and table capacity constraints (constraint (15)) respectively 

can be used to assess the value of a seat and for determining the value of a table during different 

time periods. For example, with the hotel bid price model, the minimum rate available for a 

certain length of stay can be calculated by averaging the shadow prices for the capacity 

constraints for those days. Although most restaurants do not use variable pricing to the extent 

that airlines and hotels do, they could use the shadow prices for the time period capacity 

constraints to determine the minimum price (or maximum discount allowable) which should be 

available. Bertsimas and Shioda (2003) also discussed the application of the hotel bid-price 

model to the table assignment rule and solved the LP relaxation of the IP model and made 

seating decisions based on the difference between the expected party revenue and the sum of the 

dual prices corresponding to the times at which the party would be using the table. 

We investigated three variants of RevMgtIP, which differed in the length of daily time 

periods. RevMgtIP15 used 15 min time periods, RevMgtIP5 used 5 min time periods and 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib1
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib5
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RevMgtIP3 used 3 min time periods. Smaller time intervals allow for a closer approximation of 

the true processing of customers. This led us to expect that the model would perform better with 

short periods. However, as the number of periods increases, the model requires far more 

variables, making it more difficult to solve. Also, party demand becomes more granular, which 

may result in poor performance. 

RevMgtIP had the most detailed data of the three IP models, which led us to believe that 

it would perform better than the NaïveIP models and TimeIP. However, it also has four potential 

limitations. First, its increased number of integer variables could increase solution time. Second, 

it treats dining duration as fixed by party size. Third, it assumes that party arrivals are 

deterministic and that they occur at the beginning of each time interval. Fourth, RevMgtIP does 

not allow parties to wait for service: if service does not commence for a party in the period in 

which it arrives, the party is lost. This may become problematic with short time intervals, when 

by necessity the party demand is more granular. 

3.6. Simulated annealing heuristic (SimAnneal) 

Our simulated annealing heuristic, SimAnneal, incorporates a simulated annealing front-

end on the TABLEMIX restaurant simulator as a back-end solution evaluator. The pseudo code 

of the heuristic is presented in Table 1. Some items of note in the pseudo code are as follows. 

First, we decremented the temperature parameter every two iterations, which resulted in a total of 

49 decrements given our 100 iteration limit. Second, because evaluating a table mix is 

computationally intensive, we kept a list of mixes that we had already evaluated and ensured that 

we never evaluated the same mix twice. On this problem, at least, it was much quicker to check 

the list than to simulate the use of the mix. Finally, we did not do any particular tuning of the 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl1
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parameters (e.g. temp, cooling, DropProp, probabilities of selecting different table sizes). 

However, our choices for the general annealing parameters (temp, cooling, DropProp) were 

those that have served us well in a variety of other simulated annealing heuristics ( Thompson, 

1996 and Brusco et al., 1997). 

We implemented two versions of SimAnneal, which differed solely in their initial table 

mix. SimAnneal-S (for scratch) started with no tables and used the logic for adding tables 

previously discussed to arrive at its initial table mix. Conversely, SimAnneal-N started with the 

better of the table mixes identified by the NaïveIP models. 

SimAnneal requires access to a restaurant simulator. The disadvantage of this is that one 

must build, or otherwise obtain, a simulator. The advantage of doing so, however, is that it 

enables SimAnneal to incorporate the stochastic nature of party arrivals, party sizes and service 

durations. This, combined with the fact that simulated annealing has been successfully applied in 

a wide variety of optimization problems, made us expect that SimAnneal would yield good 

solutions. 

4. Experiment 1 

4.1. Problem setting 

In order to study the table mix problem, for our first experiment we obtained detailed data 

from a busy 240-seat restaurant located in a shopping mall in California. This restaurant had 2 

two-tops, 56 four-tops, and 2 six-tops. This table mix was similar to other restaurants in the chain 

and had been selected by a restaurant designer for aesthetic and efficiency reasons. During the 

busy dinner period (6–8 p.m.), customers typically waited for a table for 30–60 min. The 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib33
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib33
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib7
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majority of parties contained one or two people and, across the week, the average dining time 

was 49.5 min, with a US$ 36.36 average check per party, or US$ 13.88 per person. 

Not surprisingly, demand varied by day of week and time of day (Fig. 1). The party mix 

also varied by day of week (Fig. 2), and dining duration and average check varied by party size 

(Table 2 and Table 3). 

We calculated seat occupancy by day of week and time of day (Fig. 3). Hourly seat 

occupancy was calculated by dividing the hourly revenue per available seat hour (RevPASH) by 

the average check per person for that hour and then multiplying by the average meal duration (in 

hours) for that hour. 

4.2. Problem scenarios 

We used the daily data from the restaurant to create a set of eight problem scenarios in 

Experiment 1. Seven of the scenarios corresponded to situations in which the restaurant had a 

single peak demand day that would determine the optimal table mix. Because of the differences 

in demand data across days of the week at the study restaurant, we thought that the optimal table 

mix might also vary by day of week. The eighth scenario was one in which all days exhibited 

peak demand periods and the optimal table mix was based on what worked well across the entire 

week. For each scenario, we simulated 150 weeks of operation. 

Optimizing a restaurant's table mix only matters if a restaurant is capacity constrained. To 

ensure that the restaurant was capacity constrained, we set the total minutes of customer demand 

equal to a 100% seat utilization during the daily peak 2 h periods. We also had a 90 min ramp-up 

to the 2 h peak period. Fig. 4 shows the demand levels we used, measured in the number of 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#fig1
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#fig2
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl2
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl3
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#fig3
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#fig4
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parties arriving per 15 min interval, by day. The party arrival rates shown vary by day because 

the mean party size and mean dining duration differs by day, but seat utilization was held 

constant. The party arrival rates shown in Fig. 4 differ from those shown in Fig. 1, since our 

objective in creating the arrival rates shown in Fig. 4 was to ensure that the restaurant was 

capacity constrained. 

4.3. Results 

We used the TABLEMIX simulator to evaluate all 13,561 table combinations. The large 

number of table mixes occurred because we considered the use of 2-, 4-, 6- and 8-tops and 

because the restaurant had a total capacity of 240 seats. Revenue ranged from a low of US$ 

20,624 with 30 eight-tops to a high of US$ 44,722 with the optimal mix of 56 two-tops, 24 four-

tops, 4 six-tops and 1 eight-top. There were 105 mixes within 1% of optimal and 292 mixes 

within 2% of optimal. 

4.3.1. Solution times 

The techniques varied in the time required to develop solutions (Table 4). The times to 

determine the table mix for a single day ranged from about one second, for the NaïveIP models, 

to 139 min, for Enum. RevMgtIP and TimeIP were also very fast. Since SimAnneal was 

evaluating 100 different table mixes, the time it required was about 100/13,561, or 0.74% of the 

time required by Enum. Enum, RevMgtIP, TimeIP and SimAnneal all required more time to 

develop table mix solutions for the weekly problem compared to single-day solutions. The jump 

in solution time for RevMgtIP3 was particularly pronounced: for the weekly problem it required 

more time than did SimAnneal. NaïveIP required the same amount of time for both approaches 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#fig4
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#fig1
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#fig4
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl4
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since it did not require any more decision variables in its weekly form (recall that all the NaïveIP 

models require is averaged weekly data inputs). 

4.3.2. Revenue and table mix 

The recommended table mixes from each method are reported in Table 5. The resulting 

table mixes varied among solution methods, but all had between 48 and 56 two-tops, between 22 

and 25 four-tops, between 4 and 6 six-tops, and between 0 and 2 eight-tops. 

Table 6 reports the revenue from the recommended table mixes for each day of week and 

for the entire week. Table 7 expresses the revenue as proportions of optimal. Optimal solutions 

to the weekly problem were found by both simulated annealing approaches. The other solution 

methods all provided an answer within 2% of optimal. NaïveIP-A had the best performance 

followed by TimeIP, RevMgtIP5, RevMgtIP3 and NaïveIP-B, and RevMgt15. 

Simulated annealing also had the best performance on the daily problem. SimAnneal-N, 

which uses the NaïveIP solution as a starting point, found the optimal solution for six out of the 

seven single days. Its worst performance on any day was Thursday, when the solution it found 

was 0.13% below optimal. When allowed to run for more iterations, SimAnneal-N found the 

optimal on Thursday on its 112th iteration. SimAnneal-S was the next best performer, followed 

by TimeIP, NaïveIP-A, RevMgtIP5, RevMgtIP3, RevMgtIP15, and NaïveIP-B. 

When a separate table mix was calculated for each day of the week, the resulting revenue 

obtained from all but the Naïve-B approach was between 1.0% and 1.7% higher than for a single 

mix used for the entire week. This suggests that a busy restaurant with highly variable demand 

should consider different table configurations for each day of week and possibly meal period. 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl5
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl6
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl7
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The revenue values reported in Table 6 that are achieved by Enum translate to 

approximately 80% of the possible revenue that could have been achieved, had all arriving 

parties been served (which, recall, was set based on a 100% seat utilization). Thus, the 80% 

revenue figure translates to an 80% seat utilization value, which is comparable to the typical 

maximum seat utilizations that have been observed in earlier research (Thompson, 

2002 and Thompson, 2003). Given our experimental assumptions, it also translates into an 80% 

customer service level. 

4.4. Discussion 

While the optimal result can be found from enumeration, the sheer time involved renders 

this solution method impractical for most restaurants or restaurant chains. In terms of the quality 

of the solution per time expended, the simulated annealing heuristic was the top performer. We 

had expected that the IP models would perform better as their degree of detail increased. This 

had led us to believe that RevMgtIP would perform better than TimeIP, which in turn would 

perform better than NaïveIP. We were proven wrong since NaiveIP-A outperformed all IP 

solutions for the entire week problem and TimeIP had the best IP performance for the daily 

problem. Using paired t-tests of the difference between a model's RevPASH and the best 

possible RevPASH, SimAnneal-N and SimAnneal-S were statistically indistinguishable (at the 

0.01 significance level), while SimAnneal-N was statistically superior to all other models. 

The use of either simulated annealing heuristic requires access to a restaurant table 

simulator. If such a simulator is not available, our recommended heuristic is NaïveIP-A or 

TimeIP. These models yielded solutions within about 0.5% of optimal and were easily solved 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl6
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib35
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib35
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib36
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with commercially available IP software. The size of these models, even in its weekly form, was 

such that we were able to solve them using Solver in Microsoft Excel®. 

Of the three variants of RevMgtIP, the one using 5 min time periods (RevMgtIP5) 

performed best. We believe that it outperformed RevMgtIP15 since its 5 min time periods allow 

a better representation of the processing of parties in the restaurant. Conversely, 3 min time 

periods were not as effective as 5 min periods, because of the granularity of party demand that 

manifested itself with short-duration time periods (recall that RevMgtIP does not allow parties to 

wait for service-service must commence in the period in which the party arrives or the party will 

be lost). Also, the size of RevMgtIP3 model for the weekly problem resulted in it requiring more 

time to solve than SimAnneal. Although the performance of RevMgtIP5 was not quite as good as 

that of NaiveIP-A or TimeIP, the additional information available from its sensitivity analysis 

may make it an attractive solution approach. 

Our results enabled us to evaluate the potential revenue gain associated with changing the 

table configuration from day to day compared to maintaining a static table configuration. The 

benefit of doing so was US$ 497 per week (US$ 45,219–US$ 44,722) or 1.1% of total revenue. 

Clearly, this would seem to be warranted especially since in most cases, additional labor would 

not be required. In addition, if the restaurant was configured with primarily two-tops, tables 

could be easily reconfigured on a daily basis. Given the different optimal table mix across days, 

an interesting design problem would address the most expedient way to reconfigure the 

restaurant. For example, if the restaurant contained primarily 2-tops, tables could be easily 

reconfigured on a daily basis. 
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The performance of the NaïveIP-A model surprised us. We had thought it would be the 

poorest performer of the methods tested because of its simplistic nature and lack of inclusion of 

data on party value, party duration and demand. Still, if such a simple model could lead to near 

optimal results, it warranted further investigation. We decided to perform a second, more broadly 

based experiment, which we describe below, to better benchmark the performance of the 

NaïveIP-A and NaïveIP-B model against SimAnneal-N. SimAnneal-N had developed optimal 

solutions for the weekly problem in the test problem and had developed a solution within 0.02% 

of optimal for the single day problem. Complete enumeration would always find the optimal 

solution, but the time involved rendered this approach impractical for our experiment. 

5. Experiment 2 

Experiment 2 contained 96 distinct restaurant scenarios that we constructed, varying on 

six environmental factors. In selecting the factors, and their levels, we drew upon the data from 

the actual restaurant used in Experiment 1 and upon our personal knowledge of the restaurant 

industry. In this experiment, we simulated 100 days of restaurant operation. 

5.1. Factors tested 

We tested a variety of factors, including the range of durations across party size, the 

variability of duration with party sizes, the demand intensity, party value differences, party size 

mix and restaurant size. We describe each below. 

Duration range across party sizes. Our original data showed that in general, smaller 

parties took less time to dine than larger parties. We wanted to see if the difference between the 

shortest dining time and the longest dining time affected the results (with the mean held 
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constant). The experiment used two ranges of duration across party sizes: 20 min and 40 min. 

We expected that the SimAnneal and the Naïve-B models would outperform the Naïve-A model 

since they include information on dining duration. 

5.1.1. Coefficient of variation in dining durations 

Similarly, we thought the coefficient of variation of dining durations within party sizes 

might affect the results. Our original data had a coefficient of variation of approximately 0.4. We 

wanted to test how the models would react to a coefficient of variation of 0.3 and 0.5. Since the 

SimAnneal model explicitly considers the standard deviation of dining duration, we believed that 

it would outperform the Naïve models. 

5.1.2. Demand intensity 

We had already increased demand levels so that the restaurant was operating at capacity, 

but wanted to test the sensitivity of the models at even higher demand levels. We tested two 

levels of demand intensity: 100% and 120%. Again, we expected the SimAnneal model to 

outperform the Naïve models since it was the only model to explicitly consider demand levels. 

5.1.3. Party value range 

In the restaurant described in Experiment 1, smaller parties spent more per person than 

larger parties. We wanted to see if varying the difference between the smallest and largest party 

value would impact the results and so we tested two levels of party value range (low and high). 

We expected the SimAnneal-N to outperform the Naïve models since it explicitly considers party 

value. 
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5.1.4. Party size 

The restaurant described in Experiment 1 had an average party size of about 2.5 people. 

We wanted to see how the heuristics reacted to an average party size of 2.5 and 3.5 people. In 

previous research, Thompson (2002) found that different party sizes can affect table mix results 

because of the necessity for larger tables. Since all models incorporated information on party size 

mix, we expected similar performance across party sizes. 

5.1.5. Restaurant size 

The original data set had 240 seats. For the test case, we wanted to evaluate the model 

sensitivity to a small (50 seat), medium (200 seat) and large (1000 seat) restaurant. Since all 

models incorporated information on restaurant size, we expected similar performance across the 

factor's levels. 

In total, Experiment 2 contained 96 scenarios (Table 8). Since the Naïve-A model only 

considered two factors (party size mix and restaurant size), it yielded only 6 different table mixes 

across the 96 scenarios. The Naïve-B model considered three factors (party size mix, restaurant 

size and duration difference), so it yielded 12 different table mixes across the 96 scenarios. Since 

SimAnneal considered all six factors, it yielded 96 table mixes. 

In Experiment 2 we allowed five different table sizes (2, 4, 6, 8 and 10). With these table 

sizes, the 50-, 200-, and 1000-seat restaurants had a total of 333, 44,559, and 22,849,600 possible 

table size combinations. Because of the large number of table combinations, we allowed the 

SimAnneal-N model to use up to 200 iterations to find the solution (as opposed to 100 iterations 

in the original study). 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib35
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl8
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To evaluate the revenue performance of the Naïve models, we entered the table mix 

solution into the TableMix model along with the appropriate factor levels and ran the simulation 

to find the resulting revenues. 

Since we had different restaurant sizes, we compared the models on the basis of revenue 

per available seat (RevPAS). In addition, we only studied the entire week problem and did not 

analyze differences by day of week. 

5.2. Results 

On average, the SimAnneal-N model performed slightly better than both the Naïve-A 

model (99.0% of SimAnneal-N) and the Naïve-B model (98.5% of SimAnneal-N). The Naïve-A 

model performed nearly as well as in our initial study (99.5%), and continued to outperform the 

Naïve-B model (Significant at the P < 0.001 level) (Table 9). 

5.2.1. Duration range across party sizes 

On average, the RevPAS was higher by US$ 1.99 for the higher duration range than for 

the lower range. The Naïve-A model achieved 98.8% of SimAnneal's RevPAS for the 20 min 

range and 99.2% for the 40 min range. The Naïve-B model achieved 98.4% of SimAnneal's 

RevPAS for the 20 min range and 98.5% for the 40 min range. 

5.2.2. Coefficient of variation in dining durations 

On average, the RevPAS was US$ 1.01 higher for the 0.3 level than for the 0.5 level. The 

Naïve-A model reached about 99% of SimAnneal for both cases, while the Naïve-B model 

achieved 98.2–98.7% of the SimAnneal results for both levels. 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#tbl9
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5.2.3. Demand intensity 

Not surprisingly, the RevPAS was higher for the 120% level than for the lower level (by 

US$ 1.93). With higher demand intensity, the SimAnneal model has greater choice of parties to 

accept or reject. With excess demand, it is possible to accept more higher-value parties. The 

Naïve-A model results were 99.5% for the 100% case and 98.5% for the 120% case, while the 

Naïve-B model achieved 99.7% of the SimAnneal results for the 100% case and 97.3% for the 

120% level. The Naïve models did not perform as well for higher demand intensities, which is 

not surprising since their formulations do not account for demand intensity. 

5.2.4. Party value range 

RevPAS was US$ 2.87 higher for the higher level of this factor than for the lower level. 

The Naïve-A model reached about 99% for both party value ranges while the Naïve-B model 

achieved 98.3–98.6% of the SimAnneal results. 

5.2.5. Party size 

The RevPAS was higher for the smaller mean party size, which is not surprising given 

the higher per person value of smaller party sizes. The Naïve-A model achieved about 99% of 

SimAnneal's RevPAS for both party sizes, while the Naïve-B model achieved about 98.5% of 

SimAnneal's RevPAS across party sizes. 

5.2.6. Restaurant size 

In general, the RevPAS was higher for the 1000-seat case than for the 200-seat and the 

50-seat cases. The Naïve-A model achieved 98.8% of the SimAnneal results for the 1000-seat 
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restaurant and between 99.0% and 99.2% for the smaller restaurants. The Naïve-B achieved 

99.1% of the SimAnneal for the 50-seat restaurant; 98.5% for the 200-seat restaurant; and 97.9% 

for the 1000-seat restaurant. 

5.2.7. Table assignment rule (TAR) 

To test the effect of the largest-waiting-party-that-fits TAR that we employed, we 

randomly sampled 10 restaurant scenarios from the 96 in Experiment 2. On these 10 samples, we 

ran SimAnneal using a FCFS (or longest-waiting party) table assignment rule. The FCFS rule 

averaged 97.57% of the RevPASH of the largest-waiting-party-that-fits TAR. These results 

further demonstrate the need for additional research on the effects of TARs. 

5.3. Discussion 

Overall, NaïveIP-A averaged within 1% of the SimAnneal solutions, while NaïveIP-B 

averaged within 1.5% of those solutions. Initially we were quite surprised that NaïveIP-A 

outperformed NaïveIP-B, particularly since NaïveIP-B incorporates information on dining 

duration by party size, while NaïveIP-A does not. However, the reason for this paradox became 

apparent. It relates to our experimental condition where smaller parties are more valuable, per 

person. Since smaller parties are more valuable, relatively more seats should be allocated to 

them. However, neither NaïveIP-A nor NaïveIP-B considers party value in their calculations. 

NaïveIP-B, by considering dining duration, actually allocates more seats towards larger parties 

than does NaïveIP-A, thus reducing its effectiveness. This leads to some suggestions for further 

enhancements to the NaïveIP models, which we identify below. 
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6. Conclusions 

There is substantial room for improvement in how restaurant managers match their 

capacity to demand. The ability to quickly identify an optimal or near optimal table mix is likely 

to be of great relevance, given the size of the industry. For example, the optimal table mix for the 

restaurant described in Experiment 1 can allow the restaurant to increase revenue by over 32% 

(=US$ 44,722/US$ 33,712 × 100%) compared to its existing table mix. It is reasonable to ask 

why a restaurant would be operating with such a poor performing table mix. As in most 

businesses, capacity, in this case table mix, is taken as a given, and little thought is given to it 

once the restaurant is constructed. Clearly, this study indicates that the table mix has 

considerable revenue impact and is worthy of consideration. 

We proposed and tested a variation of solution techniques and found that simulated 

annealing had the best performance, though the NaïveIP-A and TimeIP models had performance 

within 0.5% of optimal. We also found that optimizing table mix by day of rather than for the 

entire week led to a 1.1% increase in revenue. 

In Experiment 2, we tested the robustness of the NaïveIP models under a variety of 

circumstances and found that NaïveIP-A performed within 1% of the Simulated Annealing 

solutions, while NaïveIP-B was within 1.5% of the Simulated Annealing solutions. 

Clearly, this research is not without limitations. In Experiment 1, we did not evaluate any 

table mix with tables larger than eight seats and, in Experiment 2, we did not evaluate any table 

mix with tables larger than ten seats. Given the assumptions of our experiment, this meant that 

we did not serve any party larger than 8 (10) people. The main reason we limited our largest 
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table size was combinatorial complexity. For example in Experiment 1, allowing 10-top tables in 

addition to the 2-tops, 4-tops, 6-tops and 8-tops increases the number of table mixes to be 

evaluated to 88,759 or 6.55 times the number of table mixes we evaluated. Given the 

performance of the SimAnneal heuristics, however, we are confident that such heuristics could 

yield optimal or near-optimal performance even in an environment with this increased flexibility. 

Once the optimal table mix is found, a number of operational concerns associated with a 

typically increased number of tables must be addressed. For example, staffing levels and 

materials requirements will probably increase and the increased flow of customers may result in 

bottlenecks developing in the kitchen or bar (Kimes, 2004). Other considerations are social 

norms on personal space (Hall, 1981) and how a restaurant's design can influences table 

configuration. Obviously, our research leaves many unanswered questions in restaurant design. 

Given the rather impressive performance of the simplest models we investigate, we 

believe that further enhancements of the NaïveIP models are warranted. We recommend that 

some of the factors currently missing from the NaïveIP models be incorporated into the models. 

For example, enhancements to the models could address effect of demand intensity and 

differences in customer values across party sizes. In addition, research testing the impact of 

various table assignment rules on the NaiveIP models seems warranted. 

Our investigation hints at the importance of linking capacity planning and revenue 

management research. To date, these areas have largely operated independently. A firm can only 

make good decisions about which customers to serve to if it has the right capacity to sell. While 

this research was confined to a full-service restaurant, we expect that our approaches to capacity 

planning and revenue management can also be applied to other service firms. 

http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib15
http://www.sciencedirect.com.proxy.library.cornell.edu/science/article/pii/S0272696304001160#bib13
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Table 1.  Pseudo code of the simulated annealing heuristic. 

1. Set Seats = 240,  temp = 1,  cooling = 0.95,  Iteration = 0,  MaxIterations = 100,  BestValue = 0 and 
IncumbentValue = 0 

2. Develop starting table mix (see narrative). 

3. Add the current table mix to the list of mixes evaluated. 

4. Set Iteration = Iteration + 1. 
 

5. Simulate the current table mix, using the TABLEMIX simulation model. Let CurrentValue equal the 
value of the current mix. 

6. Set ReplaceIncumbent = false. 

7. If (CurrentValue > BestValue) then replace the best table mix with the current table mix. 

8. If (CurrentValue ≥ IncumbentValue) then set ReplaceIncumbent = true and go to step 11; otherwise 
continue with step 9. 

9. Set x = random[0, 1). 

10. If (x < exp((CurrentValue − IncumbentValue)/temp)) then set ReplaceIncumbent = true. 

11. If (ReplaceIncumbent) then replace the incumbent table mix with the current mix; otherwise replace 
the current table mix with the incumbent table mix. 

12. Set DropProp = random [0.1,  0.2). 

13. Randomly select tables and remove them from the current table mix. Repeat until at least Seats × 
DropProp seats have been removed from the mix. 

14. Iteratively add tables to the mix until the current mix has a total of Seats. Select a table size (that 
would not result in Seats being exceed), where the probability of a table being selected is 1/(number of 
seats). 

15. If the current table mix is the same as any that have already been evaluated, return to step 12. 

16. If (modulus(Iteration, 2) = 0) then set temp = temp × cooling. 

17. If (Iteration < MaxIterations) then return to step 3; otherwise return the best table mix. 
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Table 2.  Mean dining duration (minutes), by party size and day of week. 

Party 
size Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

1 40.5 38.3 43 35.7 40.6 48.3 42.9 

2 45.5 47 47.8 47.5 47.9 47.4 46.4 

3 48.4 53.4 52.6 52.9 49.7 53.7 50.5 

4 51.1 52.6 52.8 56.7 53 55.7 54.9 

5 54.5 62.3 60.3 59.5 66.1 55.4 55.2 

6 69.9 67 61.8 66.3 59.8 63.5 61 

7 68.7 73.5 83 74.1 58.8 59.8 62.4 

8 62.6 76.2 89 59.5 92.5 74.8 72.2 

9 64.3 51.4 61.2 67.8 59.8 83.2 71.8 

10 64.3 51.4 61.2 67.8 59.8 83.2 71.8 
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Table 3. Mean party revenue, by party size and day of week 

Party 
size 

Sunday 
(US$) 

Monday 
(US$) 

Tuesday 
(US$) 

Wednesday 
(US$) 

Thursday 
(US$) 

Friday 
(US$) 

Saturday 
(US$) 

1 22.02 17.9 19.11 16.22 16.78 33.18 29.6 

2 27.94 30.01 29.12 27.48 29.39 29.98 28.78 

3 36.12 39.13 37.9 38.01 37.03 41.54 39.47 

4 47.2 47.45 44.42 52.52 48.93 49.21 46.97 

5 56.38 62.49 55.05 61.92 68.55 56.32 61.16 

6 76.08 72.75 58.08 75.61 78.52 73.03 74.7 

7 79.21 74.07 42.15 92.38 73.94 75.72 86.97 

8 84.65 98.55 115.25 100.27 137.87 86.27 93.3 

9 132.14 102.79 86.96 111.46 94.05 137.88 131 

10 123.14 116.11 99.42 126.79 128.33 122.73 127.73 
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Table 4. Solution times, in minutes, by day and week for the various methods. 

Method 
Solution time per single 
daya 

Solution time per 
weeka 

Enum 139 973 

NaïveIPAb 0.01 0.01 

NaïveIPBb 0.02 0.02 

TimeIPb 0.05 0.18 

RevMgtIP15b 0.02 0.03 

RevMgtIP5b 0.02 0.73 

RevMgtIP3b 0.13 7.58 

SimAnnealc 1.16 6.05 

   a On a Pentium IV 2.0 GHz personal computer. 
b Model solved using SAS-OR®. 
c To evaluate 100 table mixes. 

 

 

  



Table 5.  Table mixes recommended by the solution methods. 

Method Sunday Monday Tuesday Wednesday Thursday Friday Saturday Whole 
week 

Enum 50-23-4-3 59-23-5-0 67-22-3-0 59-22-3-2 55-23-5-1 52-24-4-2 51-23-5-2 56-24-4-1 

NaïveIP-A 46-22-6-3 57-20-5-2 64-20-4-1 59-21-5-1 55-23-5-1 51-23-5-2 49-24-5-2 53-22-5-2 

NaïveIP-B 42-22-6-4 51-20-7-2 59-21-5-1 50-22-6-2 50-24-6-1 45-24-5-3 44-23-6-3 50-22-6-2 

TimeIP 46-24-6-2 58-22-6-0 65-23-3-0 57-22-5-1 49-26-5-1 47-26-5-2 47-25-5-2 52-25-6-0 

RevMgtIP15 47-20-7-3 54-24-6-0 62-21-4-1 52-19-6-3 51-25-5-1 47-26-3-3 46-25-4-3 48-23-6-2 

RevMgtIP5 46-20-6-4 55-22-7-0 68-20-4-0 57-20-5-2 54-22-6-1 47-27-5-1 47-23-5-3 49-24-5-2 

RevMgtIP3 45-22-5-4 54-24-6-0 67-20-3-1 57-17-7-2 51-22-7-1 50-25-4-2 47-23-5-3 50-22-6-2 

SimAnneal-Sa 

49-22-5-3 59-23-5-0 
(45) 

67-22-3-0 
(35) 

59-22-3-2 
(78) 

55-23-5-1 
(98) 

55-26-3-1 51-23-5-2 
(33) 

56-24-4-1 
(80) 

SimAnneal-Na 

50-23-4-3 
(31) 

59-23-5-0 
(41) 

67-22-3-0 
(55) 

59-22-3-2 
(33) 

57-22-5-1 52-24-4-2 
(64) 

51-23-5-2 
(4) 

56-24-4-1 
(47) 

Existing 2-56-2-0 2-56-2-0 2-56-2-0 2-56-2-0 2-56-2-0 2-56-2-0 2-56-2-0 2-56-2-0 

          a Values in parentheses are the iteration on which the heuristic identified the optimal solution 



Table 6. Revenue from the solution techniques’ recommended table mixes. 

Method Sunday 
(US$) 

Monday 
(US$) 

Tuesday 
(US$) 

Wednesday 
(US$) 

Thursday 
(US$) 

Friday  
(US$) 

Saturday 
(US$) 

Whole 
week     
(US$) 

Single-
day total      
(US$) 

Single-
day 
premium 
(%)a 

Enum 6290 6601 6553 6332 6457 6539 6448 44722 45219 1.1 

NaïveIP-A 6234 6539 6483 6324 6457 6513 6439 44545 44989 0.5 

NaïveIP-B 6186 6405 6378 6181 6410 6373 6318 44207 44252 0.1 

TimeIP 6249 6588 6536 6327 6422 6510 6420 44489 45052 1.3 

RevMgtIP15 6250 6531 6457 6186 6448 6457 6386 43971 44715 1.7 

RevMgtIP5 6237 6541 6544 6306 6449 6483 6391 44223 44950 1.6 

RevMgtIP3 6241 6531 6526 6259 6406 6528 6391 44207 44882 1.5 

SimAnneal-S 6286 6601 6553 6332 6457 6511 6448 44722 45188 1 

SimAnneal-N 6290 6601 6553 6332 6448 6539 6448 44722 45211 1.1 

Existing 4865 4829 4609 4683 4850 4962 4915 33712 33712 N/A 

            

a Percentage increase in revenue yielded by the single-day best solutions, compared to the whole-week solution. 

 

  



Table 7.  Revenue from the solution techniques’ recommended table mixes, expressed as a percentage of optimal revenue. 

Method Sunday 
(%) 

Monday 
(%) 

Tuesday 
(%) 

Wednesday 
(%) 

Thursday 
(%) 

Friday 
(%) 

Saturday 
(%) 

Whole 
week 
(%) 

Single-
day 
total 
(%) 

Enum 100 100 100 100 100 100 100 100 100 

NaïveIP-A 99.1 99.1 98.9 99.9 100 99.6 99.9 99.6 99.49 

NaïveIP-B 98.4 97 97.3 97.6 99.3 97.5 98 98.85 97.86 

TimeIP 99.4 99.8 99.7 99.9 99.5 99.6 99.6 99.48 99.63 

RevMgtIP15 99.4 98.9 98.5 97.7 99.9 98.8 99 98.32 98.89 

RevMgtIP5 99.2 99.1 99.9 99.6 99.9 99.1 99.1 98.89 99.41 

RevMgtIP3 99.2 98.9 99.6 98.9 99.2 99.8 99.1 98.85 99.26 

SimAnneal-S 99.9 100 100 100 100 99.6 100 100 99.93 

SimAnneal-N 100 100 100 100 99.9 100 100 100 99.98 

Existing 77.3 73.2 70.3 74 75.1 75.9 76.2 75.4 N/A 

 

 

 

  



Table 8.  Experimental factors affecting each method. 

Factor Levels NaïveIP-
A 

NaïveIP-
B 

SimAnneal 

Duration range 2 
 

X X 

Demand intensity 2 
  

X 

Party value range 2 
  

X 

Party size 2 X X X 

Restaurant size 3 X X X 

Coefficient of 
variation 2 

  
X 
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Table 9.  Results from Experiment 2. 

  Method 

Factor Level 

  SimAnneal (mean 
RevPAS) (US$) 

Naïve-A (% of 
SimAnneal) (US$) 

Naïve-B (% of 
SimAnneal) (US$) 

Duration range 
across party sizes 

20 min 27.68 27.36 (98.8%) 27.24 (98.4%) 

 40 min 29.69 29.44 (99.2%) 29.25 (98.5%) 

Coefficient of 
variation of dining 
duration 

0.3 29.19 28.92 (99.1%) 28.82 (98.7%) 

 0.5 28.18 27.87 (98.9%) 27.67 (98.2%) 

Demand intensity 100% 27.72 27.59 (99.5%) 27.63 (99.7%) 

 120% 29.65 29.21 (98.5%) 28.86 (97.3%) 

Party value range Low 27.25 27.00 (99.1%) 26.87 (98.6%) 

 High 30.12 29.79 (98.9%) 29.62 (98.3%) 

Party size 2.5 
Customers 

29.75 29.50 (99.2%) 29.33 (98.6%) 

 3.5 
Customers 

27.61 27.29 (98.8%) 27.16 (98.4%) 

Restaurant size 50 seats 27 26.78 (99.2%) 26.75 (99.1%) 

 200 seats 28.98 28.68 (99.0%) 28.54 (98.5%) 

 1000 seats 30.07 29.72 (98.8%) 29.43 (97.9%) 

Overall 
 

28.68 28.40 (99.0%) 28.24 (98.5%) 

   



43 

 

Figure 1. Party arrival rate by 15 min period. 

 

 

 

  



Figure 2. Party size mix by day of week. 
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Figure 3. Seat occupancy by day of week and time of day. 
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Figure 4. Daily party arrival rates, by 15 min period. 
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